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ABSTRACT 

We develop the  theory of "branch algebras",  which are infinite- 
dimensional associative algebras tha t  are isomorphic, up to taking 

subrings of finite codimension, to a mat r ix  ring over themselves.  The  
main examples come from groups act ing on trees. 

In particular,  for every field k we const ruct  a k-algebra J~ which 

�9 is finitely generated and infinite-dimensional,  but  has only finite- 

dimensional  quotients;  

�9 has a subalgebra of finite codimension, isomorphic to M2(~); 

�9 is prime; 

�9 has quadrat ic  growth, and therefore Gelfand-Kir i l lov dimension 2; 

�9 is recursively presented; 

�9 satisfies no identity; 

�9 contains a t ranscendental ,  invertible element; 

�9 is semiprimitive if k has characterist ic r 2; 

�9 is graded if k has characterist ic 2; 

�9 is primitive if k is a non-algebraic extension of F2; 

�9 is graded nil and Jacobson radical if k is an algebraic extension 
of F2. 
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1. I n t r o d u c t i o n  

Although rings arising from groups are very interesting from a ring theorists' 

perspective, they are in a sense "too large", because some proper quotient of 

them may still contain a copy of the original group. The process of "quotienting 

out extra material" from a group ring while retaining the original group intact 

is the "thinning process" described in [43]. 

In this paper, we consider a natural ring arising from a group acting on a 

rooted tree, which we call its "tree enveloping ring". This is a re-expression, 

in terms of matrices, of Said Sidki's construction [43]. If the group's action 

has some self-similarity modeled on the tree's self-similarity, we may expect 

the same to happen for the associated ring, and we use this self-similarity as a 

leitmotiv for all our results. 

Loosely speaking (see w for a more precise statement), a weakly branch 

algebra is an algebra 92 such that  (1) there is an embedding r 92 --~ Md(92) for 

some d, and (2) for any n there is an element of 9.1 such that  ~bn(a) has a single 

non-zero entry. We show (Theorem 3.10) that  such algebras may not satisfy a 

polynomial identity. 

The main construction of weakly branch algebras is via groups acting on trees; 

the algebra 92 is then the linear envelope of the groups' linear representation on 

the boundary of the tree. We show (Theorem 3.25) that  if the groups' orbits 

on the boundary have polynomial growth of degree d, then the Gelfand-Kirillov 

dimension of 91 is at most 2d. In particular, contracting groups generate algebras 

of finite Gelfand-Kirillov dimension. 

We next concentrate in more detail on the rings 92 arising from the group 

G introduced by Grigorchuk in [21]. Recall that  G is a just-infinite, finitely 

generated torsion group. The algebra 92 over the field F2 was already studied 

by Ana Cristina Vieira in [44]. The following theorem summarizes our results 

in relation with G: 

THEOREM 1.1: The ring 92 is just-infinite and prime (Theorem 4.3). It is 

recursively presented (Theorems 4.6 and 4.15), and has quadratic growth 
(Theorem 4.7 and Corollary 4.18), so its Gelfand-Kirillov dimension is 2. The 
ring 92 has an ideal ~, and an embedding r 91 ---* M2(92), such that all the 
following: r  M2(R) --* -~, R ~ 92, r 92 -* M2(92) are inclusions with finite 
cokernel 1 (Theorem 4.3). 

Over a field of characteristic 2, the ring ~ is graded (Corollary 4.16), and may 

1 I.e. the image has finite codimension in the target. 



Vol. 154, 2006 BRANCH RINGS, THINNED RINGS, TREE ENVELOPING RINGS 95 

be presented as 

92 = (A, B,  C, D[A 2, B 2, C 2, B + C + D, BC, C B, D AD ,  

~ ( C A C A C A C ) ,  a ~ ( D A C A C A D )  for all n >_ 0), 

where a is the substitution a: {A, B,  C, D}* --, (A, B, C, D}* defined by 

A H ACA,  B H D, C ~ B, D H C. 

The subgroup generated by {1 + A, 1 + B, 1 + C, 1 + D} is isomorphic to the 

Grigorchuk group G. The ring 91 also contains a copy of the Laurent polynomials 

F2[X, X -1] (Theorem 4.20). 

I f  the ground field k has characteristic ~ 2, then 92 is semiprimitive. I f  k is 

an algebraic extension of F2, then 92 is graded nil 2, and its Jacobson radical 

coincides with its augmentation ideal. I l k  is a non-algebraic extension ofF2,  

then 92 is a primitive ring, and is not graded nil (Theorem 4.29). 

The following statement summarizes the main properties of the rings con- 

structed: 

COROLLARY 1.2: For any field k, there is a k-algebra ~ which 

�9 is finitely generated and infinite-dimensional, but has only finite- 

dimensional quotients; 

�9 has a subalgebra of finite codimension, isomorphic to M2(.~); 
�9 is prime; 

�9 has quadratic growth, and therefore Gelfand-Kirillov dimension 2; 

�9 is recursively presented; 

�9 satisfies no identity; 

�9 contains a transcendental, invertible element; 

�9 is semipr imi t ive / fk  has characteristic ~ 2; 

�9 is graded i l k  has characteristic 2; 

�9 is primitive i l k  is a non-algebraic extension ofF2; 

�9 is graded nil and Jacobson radical i l k  is an algebraic extension ofF2. 

There are interesting examples of primitive, just-infinite algebras with arbi- 

trary Gelfand-Kirillov dimension [45]; they are constructed by their presentation 

(as monomial algebras). The present construction proceeds in the opposite di- 

rection: the algebras are given as a set of endomorphisms of a vector space, and 

their algebraic properties are deduced from the representation. 

2 I.e. all its homogeneous elements are nil. 
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1.1. PLAN. Section 2 recalls constructions and results concerning groups act- 

ing on rooted trees. A few of the results are new (Propositions 2.7 and 2.9); the 

others are given with brief proofs, mainly to illustrate the parallelism between 

groups and algebras. 

Section 3 introduces branch algebras, and develops general tools and results 

concerning them; in particular, the branch algebra associated with a group 

acting on a rooted tree. 

Section 4 studies more intricately the branch algebra associated with the Grig- 

orchuk group. Its study then splits in two cases, depending on the characteristic 

being tame (5  2) or wild (= 2). More results hold in characteristic 2, in par- 

ticular because the branch algebra is graded; some results hold in both cases 

but  the proofs are simpler in characteristic 2, and therefore are given in greater 

detail there. 

1.2. NOTATION. We use the following notational conventions: functions are 

written x H x f if they are part of a group that  acts, and x ~ f ( x )  other- 

wise. Generally groups are written in usual capitals (G), and algebras in gothic 

(91). We use e for the augmentation map on group rings, w -- kere for the 

augmentation ideal, and rad P2 for the Jacobson radical of 91. 

1.3. THANKS. We are greatly indebted to Katia Pervova, Said Sidki and 

Efim Zelmanov for their open discussions on this topic. Agata Smoktunowicz 

generously contributed many interesting remarks concerning the structure of the 

Jacobson radical of the rings studied in this paper, and in particular Lemma 

4.24, and Katia Pervova contributed essential remarks on the nillity of P2. Some 

of the results were discovered after experimentation within the computer algebra 

system GAP [19], and its open development spirit should be commended. The 

referee's careful reading of the paper has been greatly appreciated. 

2. G r o u p s  a c t i ng  on  trees 

2.1. GROUPS AND TREES. We start by reviewing the basic notions associated 

to groups acting on rooted trees. 

2 .1 .1 .  Trees .  Let X be a set of cardinality # X  > 2, called the a l p h a b e t .  The 

regular r o o t e d  t r e e  on X is X*, the set of (finite) words over X. It admits 

a natural tree structure by putting an edge between words of the form xl . . .  xn 

and x l  . . .  X n X n + l ,  for arbitrary x~ E X. The root is then the empty word. 

More pedantically, the tree X* is the Hasse diagram of the free monoid X* 

on X,  ordered by right divisibility (v ~ w r ~u : v u  = w ) .  
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Let G be a group with given action on a set X. Recall that  A~G, the w r e a t h  

p r o d u c t  of A with G, denotes the group A x >~ G, or again pedantically the 

semi-direct product with G of the sections of the trivial A-bundle over X.  

2.1.2. Decomposition. Let W = Aut X* be the group of graph automorphisms 

of X*. For each n E N, the subset X n of X* is stable under W, and is called 

the n t h  l aye r  of the tree. The group W admits a natural  map, called the 

d e c o m p o s i t i o n  

r W ~ W l G x ,  

given by r = (f,  Trg) where rg E |  the a c t i v i t y  of g, is the restriction of 

g to the subset X c X*, and f :  X --~ W is defined by x '~w  f(x) = (xw) g, or in 

other words f ( x )  is the compositum X* ---* xX*  g-~ 7cg(x)X* ---* X*, where the 

first and last arrows are given respectively by insertion and deletion of the first 

letter. 

The decomposition map can be applied, in turn, to each of the factors of 

W ~ |  By abuse of notation, we say that  we iterate the map r on W, yielding 

r W -* W ~ |  l |  -< W ~ |  etc. More generally, we write r W --~ 

W ~ |  and 7r ~ its projection to |  

The action of W on X* uniquely extends, by continuity, to an action on 

X ~, the (Cantor) set of infinite sequences over X.  The self-similarity of X ~ is 

expressed via the decomposition X ~ = ] ]xcx  X~" This gives, for all n E N, a 

continuous map X ~ --* X n obtained by truncating a word to its first n letters. 

2.1.3. X*-bimodule. There is a left-action * and a right-action @ of the free 

monoid X* on W, defined for x C X and g C W by 

x . g : w H { X ( V g )  i f w = x v ,  
otherwise, 

g@x: w ~ v if (xw) g = xgv. 

These actions satisfy the following properties: 

(1) = g @ ( w ) ,  

(2) (gh)@v = (g@v)(h@vg),  

(3) = (v �9 g)@v, 

v �9 (w �9 g) = ( w )  �9 g, 

v*  (gh) = (v * g)(v . h), 

( H ( ) )  ~ g =  v*  g@v 1re, 
U n 

where in the last expression the v * (g@v) mutually commute when v ranges 

over the n th  layer X n. 
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In  this terminology, when we wrote  the decomposi t ion as r  -- (f ,  7rg), we 

had f ( x )  = g@x. 

2.1.4. Branchness.  Let G < W be a group act ing on the  regular rooted tree 

X*. The  v e r t e x  s t a b i l i z e r  StabG(v) is the subgroup of G fixing v E X*. The  

group G is 

l e v e l - t r a n s i t i v e  if G acts transit ively on X n for all n E N; 

r e c u r s i v e  if G@x < G for all x E X;  

w e a k l y  r e c u r r e n t  if it is level-transitive, and G@x = G for all x E X;  

r e c u r r e n t  if it is level-transitive, and StabG(x)@x = G for all x E X;  

w e a k l y  b r a n c h  if G is level-transitive, and (v * G) M G is non-trivial for all 

v E X*; 

w e a k l y  r e g u l a r  b r a n c h  if G is level-transitive, and has a non-trivial normal  

subgroup K,  called the  b r a n c h i n g  s u b g r o u p ,  with x * K < K for all x E X;  

b r a n c h  if G is level-transitive, and ((v * G) M G : v E X n ) has finite index in 

G for all n E N; 

r e g u l a r  b r a n c h  if G is level-transitive, and has a finite-index normal  sub- 

group K with x * K < K for all x E X;  

Weak branchness can be reformulated in terms of the action on X ~. Then  G 

is weakly branch if every closed set F C X w has a non-trivial fixator FixG(F)  = 

{g E G I g ( f )  -- f V f  E F } .  

Note tha t  if G is branch,  then K X has finite index in r  because it has 

finite index in G X and in G Z |  

Note  also tha t  if G is weakly regular branch,  then there is a unique maximal  

branching subgroup K;  it is 

K =  N (G n (v �9 
vCX* 

PROPOSITION 2.1: I f  G is transitive on X and S taba(x )@x < G for all x E X ,  

then it is recurrent, and therefore its action on ( X  ~, Bernoulli) is ergodic. In 

particular, G is infinite. 

Proof: Proceed by induction on n. Consider a layer X n of the tree, and two 

vertices x l  . . .  xn and Yl . . .  Yn. Since G is branch, it acts transit ively on X,  so 

xl  . . .  xn and y l x 2 . . .  Xn belong to  the same orbit. By induction, x 2 . . .  xn and 

Y2 . . .  Yn are in the same G-orbit;  therefore, since S taba(y l )  = G, the vertices 

y l x 2 . . .  Xn and yl �9 .. Yn belong to  the same orbit. 
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If the action is not ergodic, let A C X ~ be an invariant subset of non-{0, 1} 

measure. Then there exists n E N such that  X ~ --* X n is not onto; its image is 

a G-orbit, and thus the action of G is not transitive on the n th  layer. | 

PROPOSITION 2.2: I f  G is regular branch, then it is regular weakly branch and 

branch; i f  it is branch, then it is weakly branch; i f  it is regular weakly branch, 

then it is weakly branch. 

Proof: Let G be a regular branch group, with branching subgroup K.  By 

Proposition 2.1, G is infinite so K is non-trivial. This shows that  G is regular 

weakly branch. Assume now only that  K is non-trivial, and let v E X n be any 

vertex. Since K x~ <_ Ca(G), we may take any k ~ 1 in K and consider the 

element k * v C G. This shows that  G is weakly branch. The other implications 

are of the same nature. | 

Note finally that  the group G is determined by a generating set S and the 

restriction of the decomposition map r to S, in the following sense: 

PROPOSITION 2.3: Let F be a group generated by a set S, and let r F --~ F~|  

be any map. Then there exists a unique subgroup G of  W = Aut X* that  is 

generated by S and has decomposition map induced by r through the canonical 

map F --~ G. 

Proof: The decomposition map r yields, by iteration, a map F --~ |  for all 

n E N. This defines an action on the n th  layer of the tree X*, and since they 

are compatible with each other they define an action of F on the tree. We let G 

be the quotient of F by the kernel of this action. On the other hand, the action 

of the generators, and therefore of G, is determined by r so G is unique. | 

In particular, F may be the free group on S, and r may be simply defined by 

the choice, for each generator in S, of # X  words and a pemmtat ion .  

Therefore, in defining a recurrent group, we will only give a list of generators, 

and their images under r If X -- {1 , . . . ,  q}, we describe r on generators with 

the notation 

r =<< g@ l , . . .  ,g@q >> 7r9, or even r =<< g l , . . .  ,gq :>~ if 7rg = 1, 

rather than in the form r -- (f ,  7r) with f ( x )  = g@x. 

Note that  there may exist other groups G'  generated by S, and such that  the 

natural map F --* G'  induces an injective map G'  --~ G'  I |  However, such 
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G'  will not act faithfully on X*. The group G defined by Proposition 2.3 is the 

smallest quotient of F through which the decomposition map factors. 

Weakly branch groups G are known to satisfy no identity; i.e. for every w ~ 1 

in the free group F(y l , . . .  ,Yk) there exist g l , . . .  ,gk E G with w(gl , . . .  ,gk) ?s 1. 

We quote the following general result, due to Mikl6s AbOrt: 

PROPOSITION 2.4 ([2, Theorem 1]): Let G be a group acting on a set X,  such 

that for every finite Y C X the fixator a of Y does not fix any point in X \ Y.  

Then G does not satisfy any identity. 

His proof goes as follows: let wi be the length-/prefix of w, and let x E X be 

any. Then, inductively on i, one shows that  there exist g -- ( g l , . . .  ,gk) E G k 

such that  x, xWl(g),. . . ,  x ~~ are all distinct. The following is a weakening of 

[2, Corollary 4]. 

COROLLARY 2.5: [f G is weakly branch, then it does not satisfy any identity. 

Proof: Let G act on the boundary X ~ of the tree X*. Let Y C X be a finite 

subset, and let ~ E X \ Y be arbitrary. Then there exists a vertex v E X* on 

the geodesic ~ but on none of the geodesics in Y. Set K = G M (G * v). Since 

G is weakly branch, K is non-trivial. Assume by contradiction that  K fixes ~. 

Then since K is invariant under the stabilizer of v, and G acts level-transitively, 

it follows that  K also fixes all images of ~ under the stabilizer of ~; this is a 

dense subset of vX  ~, so K fixes X ~, which contradicts the non-triviality of K.  

Therefore there exists g E K with giy -- 1 and ~g ~ ~, so the conditions of 

Proposition 2.4 are satisfied. I 

PROPOSITION 2.6 ([29, Lemma 5.4]): Let G be a weakly branch group. Then 

its centre is trivial. 

Proof: More generally, take g # 1 E Aut(X*);  then it moves a vertex u. 

Since G is weakly branch, there is h ~ 1 acting only on the subtree uX*, and 

[g, hi # 1. m 

2.2. DIMENSION. Every countable residually-p group has a representation as 

a subgroup of Au t X* ,  for X = {1 , . . . , p} :  fix a descending filtration G = 

Go ~ GI ~_ G2 _~ -. .  with NGn -- {1} and [Gn : Gn+l] = P; identify X with 

Gn/Gn+l. Then G/Gn is identified with X n, and G acts faithfully, by multipli- 

cation on cosets, on the tree X*. In general, this action will not be recurrent. 

3 Aka "pointwise stabilizer". 
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Moreover, this action may be "inefficient" in that  the quotient of G represented 

by the action on X n may be quite small - -  if Gn "~ G this quotient is G/Gn of 

order pn, while the largest p-group acting on X ~ has order p(p"-l)/(p-1). This 

motivates the following definition. 

Let Wn = 7rn(W) be quotient of W acting on X n. We give W the structure 

of a compact,  totally disconnected metric space by setting 

d(9, h) = inf{1/#Wn[ 7rn(g) = 7rn(h)}. 

We obtain in this way the notion of c l o s u r e  and H a u s d o r f f  d i m e n s i o n .  

Explicitly, for a subgroup G < W, we have by [1] 

Hdim(G) = lim inf log #Tr n (G). 
n - ~  l o g # W n  ' 

see also [5]. The Hausdorff dimension of G coincides with that  of its closure. 

2.2.1. The tree closure. Let P < |  be any group acting on X. The t r e e  

c lo su re  of P is the subgroup P of W consisting of all g E W such that  TrY(g) C 

~ P  <_ O x -  for all n E N. I t  is the inverse limit of the groups U P ,  and is a 

closed subgroup of W. 

We have P = P~ P,  and 7r~(~) = r  l P ,  so 

#Trn(p) -_ (#Trn- l (p) )#Z •p, 

and therefore 

(4) #Trn(T) = ( # p ) ( # x " - w ( # x - 1 ) .  

In particular, #Wn = ( # @ x )  ( # X " - D / ( # x - D ,  and P has Hausdorff dimension 

log # P / l o g ( # X ! ) .  

If p is prime and X = {1 , . . . , p} ,  we will often consider subgroups G of 

Wp = P,  where P = ((1, 2 , . . .  ,p)) is a p-Sylow of |  The dimension of G will 

be then computed relative to Wp, by the simple formula 

Hdim G _ Hdim G log(p!). 
Hdimp(G) - Hdim Wp logp 

PROPOSITION 2.7: Let G be a regular branch group. Then G has positive 

Hausdorff dimension. 

If furthermore G is a subgroup of Wp, then its relative Hausdorff dimension 
Hdimp is rational. 
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Proof: Let G have branching subgroup K,  and for all n E N set Gn = ~rn(G). 

Let M C N be large enough so that  G / r  x2) maps isomorphically into 

GM/TrM-2(KX2). We then have, for all n >_ M, 

#Cn  = [G: Kl#Trn(K) = [G: K ] [ r  KX](#~rn-l(K)) #x 
= [G: K]I -#X[r  Kx] (#Gn-1)  #X. 

Write log #Gn = a # X  n +/3, for some a,  fl to be determined; we have, again 

forn_> M, 

a # X  n +/3 = (1 - # X ) l o g [ G :  K] + log[r : K x] + # X ( a # X  n-1 +/3), 

so/3 = log[G: K] - log[r : K x ] / ( # X  - 1). Then set 

= ( l o g  #GM -/3)/#X M. 

We have solved the recurrence for #G,~, and a > 0 because Gn has unbounded 

order. 

Now it suffices to note that  Hdim(G) = a ( # X  - 1) / log (#X! )  to obtain 

Hdim(G) > 0. 

For the last claim, note that  all indices in (5) are powers of p, and hence their 

logarithms in base p are integers. | 

QUESTION 1: Mikl6s Abdrt and Bdfint Virdg [3] show that there exist free 

subgroups o f W  of Hausdorff dimension 1. Is there a finitely generated recurrent 

group of dimension 1 ? A branch group? 

2.3. GROWTH. Let G be a group generated by a finite set S. The l en g th  of 

g e G is defined as IIgll = lnin{nl g = s l . . .  sn for some s i e  S}. The w o r d  

g r o w t h  of G is the function 

f c , s (n )  = #{g  e G I Ilgll -< n}. 

This function depends on the choice of generating set S. Given f ,  g: N --* 

R, say f ~ g if there exists M C N with f (n)  <_ g(Mn), and say f ~ g 

if f ~ g ~ f ;  then the equivalence class of f c , s  is independent of S. The 

group G has e x p o n e n t i a l  g r o w t h  if fa,s  ~ e n, and polynomial growth if 

fa ,s  ~ n D for some D E N. In all other cases, fa,s  grows faster than any 

polynomial and slower than any exponential, and G has i n t e r m e d i a t e  g rowth .  

If furthermore fa,s(n)  >_ A n for some A > 1, uniformly on S, then G has 

u n i f o r m l y  e x p o n e n t i a l  g rowth .  
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More generally, let E be a space on which G acts, and let * E E be any. Then  

the g r o w t h  o f  E is the function 

fE,.,s(n) = # { e  E E I e = g * with [[g[[ _< n}. 

If E = G with left regular action, we recover the previous definition of growth. 

We will be interested in the case E = X ~ with the natura l  act ion of G, or 

equivalently of E = G / S t a b a ( * )  for some * E X ~. 

2.3.1. Contraction. Let G be a finitely generated recurrent group. It  is 

c o n t r a c t i n g  if there exist A < 1, n E N and K such that ,  for a l l g  E G 

aug v E X n, we have Jig@vii < Aiig[[ + K.  

PROPOSITION 2.8 ([12], Proposi t ion 8.11): I fG is contracting, then the growth 
of ( X ~, *) is polynomial, of degree at most - n  log # X / log A. 

Conversely, if (X ~ , . )  has polynomial growth of degree d, then G is contracting 
for any n large enough and any A > (#X)  -n/d. 

PROPOSITION 2.9: I f  G is a finitely generated branch group, and (X ~, *) has 

polynomial growth of degree d, then G has growth 

fc(n)  ~ exp(na/(a+l)). 

Proof'. Let us write q = # X .  Let K be a branching subgroup,  and set R0 = 

nfin{I[g[[[ g E K,g ~ 1}. Let n E N and v E X n be given. For g E K satisfying 

]]gl[ _< R0, set hv,g = v * g. By Proposi t ion 2.8, we have [[hv,gi[ _ qn/a]ig[[ <_ 
qn/dR O. 

We now choose for all v E X n some gv E K with Iigvi] <- Ro, and consider 

the corresponding element 

h = 1-I hv,g~. 
v E X "  

On the one hand, there are at  least 2 q~ such elements, because there are at  

least 2 choices for each gv- On the other  hand, such an element has length at 

most  qnqn/dRo. If  f (R)  denotes the growth function of G, we therefore have 

f(qn+n/dRo) ~_ 2 q~, or in other  words 

f (R)  ~ exp(q l~ R/(I+I/d)log q) = exp(Rd/(d+l)). | 

2.4. MAIN EXAMPLES. The  first example of a branch group is W itself, with 

branching subgroup K -- W. In this paper,  however, we are mainly concerned 

with countable groups. Assume therefore tha t  X is finite, and choose a section 
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| o f t :  W --* ~ x ,  for instance lifting p E |  to ~': Xl ...Xn ~-~ p(Xl)X2.- , X n .  
~ X  n 

The finitary group ~ x  is the subgroup of W generated by the r  ), for 

all n E N. I t  is locally finite. 

More generally, let P be the lift to W of a transitive subgroup of @x- The 

finitary closure of P is then the subgroup pb of W generated by the r  (pXn), 
for all n E N. If P is countable, then P~ is a countable subgroup of the tree 

closure P of P.  

Much of the interest in branch groups comes from the fact that  finitely gen- 

erated examples exist. The most important  ones are: 

2.4.1. The Neumann groups. Take P a perfect, 2-transitive subgroup of |  

and choose a, b E X.  Consider two copies P,  P of P,  and let them act on X* 

as follows: 

f:EI(X2...Xn) p if X l =  a, 

(Xl . . . X n )  p : (xP)x2 . . .X n '~  (Xl ...Xn) ~ : ~Xl(X2 . . . X n )  ~ if xl  = b, 

! ( x i . . .  Xn else. 

Let G be the group generated by these two images of P.  Then G is a perfect 

group, studied by Peter Neumann in [35]; it is branch, with branching subgroup 

K = G. Indeed choose r , s  E P with a r = a r a s and b r ~ b = b 8. Then 

r  = p x 1 x . . .  • 1 and r  = 1 x P x - . .  x 1, so r  contains 

G x 1 x . . .  • 1 and therefore contains G x . . .  • G. Note tha t  P is isomorphic 

to  r  x 

The group G is more simply defined by its decomposition map: G is the unique 

subgroup of W generated by two copies P t2 P of P and with decompositions 

r =<< l , . . .  , l  >3, p, r  1 , . . . , l > > ,  

with in the last expression the 'p '  in position a and the 'p '  in position b. 

The  example P = PSL3(2), in its action on the 7-point projective plane, was 

considered in [11], where G was shown to have non-uniformly exponential word 

growth; see also [46]. These groups are contracting with n = 1 and/~ = 1. 

The Hausdorff dimension of G is log #P/ log (#X! ) ,  by (4). 

2.4.2. The Grigorchuk group. This group G acts on the binary tree, with 

X = {1,2}. I t  is best described as the group generated by {a,b,c,d},  with 

given decompositions: 

r  r =<< a, c >>, 
(6) 

r =<< a, d >>, r  
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This group was studied by Rostislav Grigorchuk, who showed in [21] that  G 

is a f.g. infinite torsion group - -  also known as a "Burnside group". He then 

showed in [22] that  it has word-growth intermediate between polynomial and 

exponential; the more precise bounds 

exp(n0"5157) ~ fG ~ exp(n ~ 

appear in [6, 9]. This group is contracting with n = 1 and A = 1. 

The group G is a branch group, with branching subgroup K -- ([a, hi) G of 

index 16. Indeed set x = [a,b]; then r  =<< 1,x >> so r  contains 

K x K.  Set x = [a, hi; then, as a group, K is generated by {x, [x,d], [x, da]}. 

The finite quotient lrn(G) has order 25"2"-3+2, for n _> 3. I t  follows tha t  G 

has Hausdorff dimension 5/8. 

Igor Lysinok obtained in [33] a presentation of G by generators and relations: 

PROPOSITION 2.10 ([33]): Consider  the  e n d o m o r p h i s m  a o f  {a, b, c, d}* def ined 

by 

(7) a H aca, b H d, d ~-~ c, c ~-~ b. 

Then 

(8) G = (a ,b ,c ,d[a2 ,b2 ,c2 ,  d2, bcd, a n ( a d ) 4 , a n ( a d a c a c )  4 Vn  > 0 I. 

Note that  if the relator r is understood as r = 1, this gives a ring presentation 

of the group ring kG. Since the algebra 92 mentioned in the introduction is a quo- 

tient of kG, it must have stronger relations than the above - -  see Theorem 4.6. 

The last two families of relations, in kG, may be written as a n [ d  a - 1,  d -  1] = 0 

and an[d (ac)2a - 1, d -  1] = 0. In essence, these relations are strengthened in P.I 

to a n ( ( d  a - 1)(d - 1)) = 0 and a n ( ( d  (~c)2~ - 1))(d - 1) = 0 respectively. 

2.4.3. The Gup ta -S idk i  group. This group F acts on the ternary tree, with 

X = {1,2,3}. It  is best described as the group generated by {x,7}, with 

decompositions 

r  r  x , x  - 1 > > .  

This group was studied by Narain Gupta  and Said Sidki [25], who showed tha t  

is an infinite 3-torsion group. 

This group is contracting with n = 1 and A = �89 

The finite quotient 7r"(F) has order 32"3"-1+1, for n > 2. I t  follows that  F has 

Hausdorff dimension 4/9 in W3. 
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The group F is branch, with branching subgroup F' = IF, r]. Indeed r 
contains F' x F' x F', because r ) =<~( 1, 1, IX,7 ] >>. 

Later Said Sidki constructed a presentation of F by generators and rela- 

tions [42], and associated an algebra to F - -  see Theorem 4.1. 

2.4.4. Weakly branch groups. Most known examples of recurrent groups are 

weakly branch. Among those that  are not branch, one of the first to be consid- 

ered acts on the ternary tree {1, 2, 3}*: 

= (x, 5) given by r =<< 1, 1, 1 >> (1, 2, 3), r =<< 5,x, x • .  

It was studied along with G, F and two other examples in [8, 10]. The finite 
quotient rn ( I  ") has order 3�88 (3~+2n+3), for n > 2. It follows that  F has Hausdorff 

dimension 1/2 in W3. 
Two interesting examples, acting on the binary tree, were also found: 

2.4.5. The "BSV" group. 

G1 = (T,#) given by r =<< 1,T > (1,2), r =<< 1,# -1 > (1,2); 

it was studied in [16], where it was shown that  it is torsion-free, weakly branch, 

and constructed a presentation of G1. The finite quotient 7r2n(G1) has order 

2�89 22~-1)+n, for n > 1. It follows that  G1 has Hausdorff dimension 1/3. 

2.4.6. The Basilica group. 

G 2 = ( a , b )  given by r =<< l, b >> (1, 2), r =<< l, a >>; 

it was studied in [24], where it was shown that  it is torsion-free and weakly 

branch, and in [14], where it was shown that  it is amenable, though not " sun  

exponentially elementary amenable". The finite quotient r2n(G2) has order 

2~ (22"-1)+n, for n > 1. It follows that  G2 has Hausdorff dimension 2/3. 

All of these groups are contracting with n = 1 and A = 1/v~.  

2.4.7. The odometer. This is a group acting on {1,2}*: 

Z = ( T ) ,  r =<< I,T >> (1,2). 

Its action on the n th  layer is via a 2n-cycle. It is not weakly branch. 

2.4.8. The Lamplighter group. This is the group G -- (Z/2) (z))4 Z, the semi- 

direct product with Z of finitely-supported Z/2-valued functions on Z. It acts 

on {1, 2}*: 

a = ( a , b ) ,  r =<< a, b >> (1, 2), r  
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Again this group is not weakly branch. 

3. A l g e b r a s  

We consider various definitions of "recurrence" and "branchness" in the context 

of algebras. Let k be a field, fixed throughout this section. 

3.1. ASSOCIATIVE ALGEBRAS. If X is a set, we write M x ( k )  = M x  the 

matrix algebra of endomorphisms of the vector space kX,  and for a k-algebra 

92 we write M x  (92) = M x  (k) | 92. 

3.1.1. Recurrent transitive algebras. A r e c u r r e n t  t r a n s i t i v e  a l g e b r a  is an 

associative algebra 92, given with an injective homomorphism r 92 --* Mx(92), 

for some set X,  such that  for every x , y  E X the linear map 92 ~ Mx(92) ~ 92, 

obtained by projecting r on its (x, y) matr ix  entry, is onto. 

The map ~ is called the d e c o m p o s i t i o n  of 92, and can be iterated, yielding 

a map cn:  92 __, Mx~(92). 

The most naive examples are as follows: consider the vector space V -- kX ~, 

and 92 = End(V). The decomposition ,nap is given by r a H (ax,y) where a~,y 

is defined on the basis vectors w E X* as follows: if a(xw) = ~ bvv, then 

ax,y(w) = E b~v'. 
v=yv~  E X ~ 

Similarly, consider the vector space V -- k X~ of functions on X ~, and 92 = 

End(V). The decomposition map is given by 

r  = (a~,y) where a~,y(f)(w) = a(v ~ f (xv) ) (yw) .  

These examples are meant to illustrate the connection between action on X ~ 

and recurrent algebras; they will not be considered below. However, all our 

algebras will be subalgebras of these, i.e. contained in | = Mx~.  

3.1.2. Decomposition. Similarly to Proposition 2.3, a recurrent transitive 

algebra may be defined by its decomposition map, in the following sense: 

LEMMA 3.1: I f ~  is an algebra generated by a set S, and r ~ -~ M x ( ~ )  is a 

map such that r = ~ for all x, y E X ,  then there exJsts a unique minimal 

quotient os  that  is a recurrent transitive algebra. 

Proof: Set 30 = ker~b and fln+l = ~b-lMx(3n) for n E N and :J = Uner~3n. 

Then 3 is an ideal in 5, and ~/fl  is a recurrent transitive algebra. Consider the 
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ideal 3 generated by all ideals R _< ~ such that  r163  < Mx(R);  then :3 <_ 3, and 

9.1 = ~ /3  is the required minimal quotient of ~. II 

It follows that  a branch algebra may be defined by a choice, for each generator 

in S, of ~ X  2 elements of the free algebra k(S). Note that we do not mention 

any topology on 92; if 92 is to be, say, in the category of C*-algebras, then the 

definition becomes much more intricate due to the absence of free objects in 

that  category. The best approach is probably that  of a C*-bimodule considered 

in [34]. 

An important feature is missing from the algebras of w namely the 

existence of finite-dimensional quotients similar to group actions on layers. 

These are introduced as follows: 

3.1.3. Augmented algebras. Let 9.1 be a recurrent transitive algebra. It is aug-  

m e n t e d  if there exists a homomorphism ~: 92 -* k, called the a u g m e n t a t i o n ,  

and a subalgebra g3 of M x  with a homomorphism ~: ~3 --~ k, such that  the 

diagram 

P2 r �9 r <_ M x  | 92 

commutes. We abbreviate "augmented recurrent transitive algebra" to a r t  

a lgebra ,  or ~ - a r t  a l g e b r a  if we wish to emphasize which g3 _< Mx is used. 

Let gl be a subalgebra of Mx,  with augmentation ~: gl ~ k. There are two 

fundamental examples of art algebras, constructed as follows: 

3.1.4. The "tree closure" g3. We define for all n C N an augmented algebra 

~n <<_ Mx,~, with ~n: ~3r~ ~ k, for n C N by g31 = gl, ~1 = ~, and 

~n+l = (m Q p �9 Mx  @ ~n[(n(p)m e ~3). 

Its augmentation is given by ~n+l(m | -~ ~(~n(p)m). 

Then there is a natural map qJn+l --* ~3n, defined by ml | . . .  | mn+l ~-* 

r |  @ ran. We set ~ -- li_mq3n. 

Then ~ is an art algebra: for a E ~ ,  write a = ~ an with an E Vn- Then 

an+l = ~ mn | Pn with m,  E Mx  and p ,  E ~n .  The sequence mn is constant 

equal to m, and we set r  = ~ m | h_mpn. 

The following diagram gives a natural map 92 --~ ~3 for any ~-ar t  algebra 92. 
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We will always suppose that  this map is injective. 

92 r r , r , r , . . .  

I 
k < r .< 1 |  ~ 2  < ' ' -  < 

m 
q3 

3.1.5. The "finitary closure". This construction starts as above, by noting 

that  the map q3n+l --* g/~, an |  ~-* r is split by a,~ ~-* an | 1. We let 

q3 ~ be the direct limit of the q3,~'s along these inclusions. 

Then gP is also an art  algebra. Its decomposition is defined on q3~ as above: 

r  | p) = m | p for m E M x  ,p C 9t3n, m | p C ~n+l. 
In some sense, ~ is the maximal N-art  algebra, and q3 b is a minimal N-art  

algebra. More precisely: 

PROPOSITION 3.2: Let ~ be an augmented algebra generated by a set S,  and 

let ~b: ~ --~ M x ( ~ )  be a map such that r = ~ for all x , y  E X .  Set 

~3 = e~b(;~) <_ M x ,  and assume that the augmentation e: ~ ~ k factors to 
r g l  ---, k .  

Then there exists a unique art  subMgebra 92 of gil that is generated by S and 

has decomposition map induced by ~ through the canonical map ~ --~ 92. 

Proos For all n �9 N there exists a map  7r n = e e l :  ~ --* g3n, and these maps 

are compatible in that  (1 | | ~+1 = 7r~. There is therefore a map 7r: ~ --~ ~ ,  

and we let 92 be the image of 7r. This proves the existence part.  

Let 921 = 5/3 '  be another image of ~ in ~ .  Write 3 = ker 7r. Then by 

definition of art algebra the images of 92 in gln must be 7rn(;~), so 3 ~ <_ kera -n, 

and 3 p _< 3. It  follows that  3 ~ = 3, because 92 and 92~ are both contained in ~ .  
| 

If X = {1 , . . . , q} ,  then a maximal augmented subalgebra of M x  is !]3 

Mq-1 @ k, where the augmentation vanishes on Mq-1. The examples we shall 

consider fall into this class. 

For V a vector space, we denote by V ~ its dual, and we consider V | V ~ as 

a subspace of End(V), under the natural  identification (v @ ()(w) = ~(w).  v. 

3.1.6. Branchness. Let 92 be a recurrent transitive algebra. We say that  92 is 

w e a k l y  b r a n c h ,  if for every v E X*,  writing Iv[ = n, we have 

V-,"(~) n (~ o (~ | v~ # {o}, 
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where v | v ~ is the rank-1 projection on kv _< kxn;  

w e a k l y  r e g u l a r  b r a n c h ,  if there exists a non-trivial ideal J~ ,1 92, called the 

b r a n c h i n g  ideal ,  with Mx(J~) < r 

b r a n c h ,  if for all n E N the ideal (gzn(92) N(PA|174176 :v E X n) has finite 

codimension in ~bn(92); 

r e g u l a r  b r a n c h ,  if there exists a finite-codimension ideal J~,192 with M x  (J~) < 

PROPOSITION 3.3: Let 92 be an art  a/gebra. Then it is infinite-dimensionaL 

If  92 is regular branch, then it is weakly regular branch and branch; if it is 

branch, then it is weakly branch. If  it is weakly regular branch, then it is weakly 

branch. 

Proof: Let 92 be an art algebra; then it is unital. By assumption, the map 

Cx,y: a H r is onto. Choose any x ~ y; then since r -- 0, so Cx,y is 

not one-to-one. I t  follows tha t  92 is infinite-dimensional. 

Let now 92 be regular branch, with branching ideal ~. Since 92 is infinite- 

dimensional, J~ ~ 0, so 92 is regular weakly branch. Assume now only tha t  J~ 

is non-trivial, and let v E X* be any vertex. Since Mx~(.fl) < r we may 

take any a ~ 0 in J~ and consider the element ~b-n(a @ (v | v~ ~ 0 in 92. This 

shows tha t  9-1 is weakly branch. The other implications are of the same nature. 
[ 

The choice of v in the definition of weakly branch algebra may have seemed 

artificial; the following more general notion is equivalent: 

LEMMA 3.4: Let 92 be a weakly branch algebra. Then for any n E N and any 

~,~? E k X  n there exists a ~ 0 in 91 with (1 - P~)(r = 0 = (r - Po), 

where P~, Pv E M x .  denote respectively the projectors on ~, ~. 

Proof: The weakly branch condition amounts to the lemma for ~ = 77 a basis 

vector (element of X n) of k X  n. Write in full generality ~ = ~ ~,v and 7? = 

rl,,v , the sums running over v E X '~. Fix w E X n and choose b r 0 with 

b| ( w |  ~ E cn(P.l). For all v ,w E X n choose Cv,w with vCn(cv,w) = w; this 

is possible because projection on the (v, w) entry is a surjective map: 9A --. 92. 

Finally set 

a =  ~ ~vc~,~obcvo,wrho. | 
v ~ w E X  n 
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3.2. HAUSDORFF DIMENSION. Let 91 be an art algebra. For every n, it has a 

representat ion Tr n = ecn: 91 --~ M x - ( k ) .  We define the  H a u s d o r f f  d i m e n s i o n  

of 91 as 
Hdim(91) = lim inf d im 7r n (91) 

n ~  dim M x  n 

Let us compute  the Hausdorff  dimension of the tree closure ~ defined in 3.1.4. 

There, 7rn(~) is none other  than  q3n. Let w ,  = ker ~, denote  the augmenta t ion  

ideal of ~ln. Then,  as a vector space, q3n+l = M x  | wn G ~ ,  so 

dim~3~+l -- d i m ( M x ) ( d i m ~  - 1) + d i m ~ .  

It  follows tha t  

dim q3 - 1 
d i m ~ n  - d i m M x  - 1 ( d i m M x ) n  + 

and since dim ~I/0 = 1 we have 

dim Mix - dim q3 

dim M x  - 1 ' 

dimq3 - 1 
Hd i m (~)  - ~ - -  f .  

If  91 is a q3-art algebra, we define its r e l a t i v e  H a u s d o r f f  d i m e n s i o n  as 

Hdimv(91) = Hdim(91) . # X  2 - 1 
H d i m ( ~ )  = Hd,m(91) d i ~  -- i "  

The following result is an analogue of Proposi t ion 2.7, and is proven along 

the same lines: 

PROPOSITION 3.5: Let  91 be a regular branch ~ - a r t  algebra. Then  Hdim~ 91 is 

a rational number  in (0, 1]. 

Proo~ Let 91 have branching ideal it, and for all n C N set 91n = 7rn(91)- 

Let M E N be large enough so tha t  9 1 / r  (J~) maps isomorphically into 

91M/TrM-2(J~). We then have, for all n _k M ,  

dim 91n = dim(91/~i) + dim 7r n (Sl) 

= dim(91/~i) + d im(r  + # X  2 dimTrn-l(N) 

= (1 - # X  2) dim(91/~) + d i m ( r  + # X  2 dim91n_l.  

We write dim91n = a # X  2n + fl, for some a,  fl to  be determined; we have 

a # X  2n +/3 = (1 - # X  2) dim(91/~l) + dim(~bYi/Mx (.r + # X  2 (a # X  2('~- 1) + fl), 
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so ~ = dim(92/~) -dim(r  2 - 1). Then set 

a = (dim92M -- ~ ) / # X  2M. 

We have solved the recurrence for dim 92n, and a > 0 because 92n has unbounded 

dimension, since 91 is infinite-dimensional by Proposition 3.3. 

Now it suffices to note that  Hdim(92) = a to obtain Hdim~ (91) > 0. Further- 

more, only linear equations with integer coefficients were involved, so Hdim(91), 

and Hdim~(91), are rational. | 

3 .3 .  T R E E  ENVELOPING ALGEBRAS. Let G be a recurrent group, acting on 

a tree X*. We therefore have a map kG --~ End(kX~),  obtained by extending 

the representation G ~ Aut X ~ by k-linearity to the group algebra. We define 

the t r e e  e nve lop ing  a l g e b r a  of G as the image 92 of the group algebra kG in 

End(kX~).  

This notion was introduced, slightly differently, by Said Sidki in [43]; it has 

also appeared implicitly in various places, notably [10] and [34]. 

LEMMA 3.6: Let 92 be a quotient of the group ring kG, and let H <_ G be a 

subgroup. Let ~ <_ 92 be the right ideal generated by {h - 11 h 6 H}.  Then 

dim92/~ < [G : HI. 

Proof: It clearly suffices to prove the claim for 92 = kG. Let n = [G : H] be 

the index of H in G, and let T be a right transversal of H in G. Given a E 92, 

write a = ~ a(gi)gi and each gi = hiti for some hi E H, ti C T. Then we have 

a = E a(gi)hiti = E a(g~)ti + E a(gi)(h, - 1)ti, 

so T generates 92/~. | 

THEOREM 3.7: Let G be a recurrent transitive group, and let 91 be its tree 

enveloping a/gebra. 

(1) 92 is an art  algebra. 

(2) I f  G is either a weakly branch group, a regular weakly branch group, a 

branch group, or a regular branch group, then 92 enjoys the corresponding 

property. 

Proof: Let G be a recurrent transitive group, with decomposition r G --~ 

G ~ |  Set ~ = kG. We define r ~ --~ M x  (~) by extending r linearly: for 

g E G, set 
r  = ~ (g~x) | (x ~ | xO). 

x E X  
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We also let ~3 be the image of k ~ x  in Mx; since G x  is 2-transitive, ~ -~ 

M#x-1  • k. 
By Proposition 3.2 there is a unique image of ~ that  is an art subalgebra of 

5, and by construction this image is 91. 

Assume that  G is regular branch, with branching subgroup K.  Set 

Yi = ( k -  l : k E K>. 

Then R is an ideal in 92, of finite codimension by Lemma 3.6. Since x*K < r 

we have J~ | (x | x ~ < ~b(~) for all x E X,  and since 91 is transitive we get 

Mx(.r < r  so 91 is regular branch. 

Next, assume G is weakly branch, and pick v E X n. There exists 1 r g E G 

with gix,,\vX~ = 1, say g = v * h .  Then g - 1  ~ 0, and 0 ~ C n ( g _ l )  = 

(h - 1)(v | v ~ E 91 | (v | v~ proving that  91 is weakly branch. The other 

implications are proven similarly. II 

We note that  the tree enveloping algebra corresponding to the odometer 

(w or the lamplighter group (w are isomorphic to their respective 

group ring. Indeed these groups have a free orbit in their action on X ~. Branch 

groups are at the extreme opposite, as we will see below. 

QUESTION 2: If 91 is the tree enveloping algebra of a branch group G, does 

Hdim(G) > 0 imply Hdim(91) > O? Do we even have Hdim~(91) _> Hdimp(G) 

for G <_ W~ ? 

3.3.1. Algebraic properties. Recall that  an algebra 91 is j u s t - i n f i n i t e  if 9.1 is 

infinite-dimensional, and all proper quotients of 91 are finite-dimensional (or, 

equivalently, all non-trivial ideals in 92 have finite codimension). The c o r e  of a 

right ideal ~ _~ 92 is the maximal 2-sided ideal contained in J~. The J a c o b s o n  

r ad i ca l  rad 91 is the intersection of the maximal right ideals of 91. The u p p e r  

nil r ad i ca l  nil* 91 is the sum of all nil ideals of 91. 

An algebra 91 is p r i m e  if, given two non-zero ideals 2, ~ ~ 91, we have 2~ ~ 0. 

It  is p r i m i t i v e  if it has a faithful, irreducible module, or equivalently a maximal  

right ideal with trivial core. I t  is s e m i p r i m i t i v e  a if its Jacobson radical is 

trivial. 

LEMMA 3.8: Let G be a regular branch group, with branching subgroup K. 

Let 92 be its tree enveloping algebra, with branching ideal Yt. If either K/[K, K] 

is finite, or G is finitely generated, then y~/~2 is finite-dimensional. 

4 Aka J-semisimple.  



114 L. BARTHOLDI Isr. J. Math. 

Proof Consider ~ = (k - 1 : k E K)  < kG. Then given kl, k2 E K we have 

[kl, k 2 l -  1 = k l l k 2 1 ( ( ~ 1  - 1)(k2 - 1) - (k2 - 1)(]~1 - -  1)) E ~2, 

so ~2 contains [K, K] - 1. This holds a fortiori in 91, so if K~ [K, K] is finite the 

result follows from Lemma 3.6. 

If G is finitely generated, then 91 is also finitely generated, so all its finite- 

codimension subrings are also finitely generated [31]. In particular ~/~2 is 

finite-dimensional. I 

THEOREM 3.9: Let 94 be a regular branch tree enveloping algebra. Then any 

ideal ~ <_ 9A contains Mx~(J~ 2) for some large enough n E N. 

In particular, if  Yt/Y~ 2 is finite-dimensional, then 91 is just-infinite, and if YO 

O, then 91 is prime. 

Proof: Assume 91 is the tree enveloping algebra of the group G. Let 3 be a 

non-trivial ideal of P2, and choose any non-zero a E 3. Then a = ~ a(gi)9i, and 

the finitely many gi in the support of a all act differently on X*. The entries of 

Cn(a), for large enough n, are therefore monomial; more precisely, there exist 

v ,w  E X n such that  the (v,w) entry of Cn(a), call it b, is in G, and therefore is 

invertible. 

Since 3 is an ideal, we have for any v ~, w ~ E X n 

(Yl | (v' | v~ | (w @ (w')~ = (J~b~) | (v' | (w') ~ _< ~l. 

It follows that  ~l contains Mx~ (N2), which by assumption is cofinite-dimensional. 

Assume now that  3,3r are two non-zero ideals of 91. By the above, there are 

n,n '  E N such that  ~ contains M x . ( ~  2) and 9' contains Mx. , (~2) .  For m 

larger than max{n,n '}  we then have 0 r Mxm(~  4) <_ 33'. I 

Recall also that  an algebra 91 is PI ("Polynomial Identity") if there exists 

w r 0 in the free associative algebra k { v l , . . . ,  Vk} such that w ( a l , . . . ,  ak) = 0 

for all ai E 91. The following result is analogous to 2.5: 

THEOREM 3.10: Let 91 be a weakly branch art  algebra. Then it is not PI. 

We prove the theorem using the following result, which may be of independent 

interest. Let 91 be an algebra acting faithfully on a vector space V. We say that  

91 s e p a r a t e s  V if for every finite-dimensional subspace Y of V and any ( r Y 

there exists a E 91 with Ya  = 0 and ~a r (Y, ~). 
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PROPOSITION 3.11 : Let 92 be an algebra separating a vector space V. Then 92 

is not PI. 

Proof: Let P E k{Vl . . . .  , Vk} be a non-commutative polynomial. We will find 

a l , . . .  ,ak E 91 and r/C V such that  ~lP(al , . . .  ,ak) # O. We actually will show 

more, by induction: let X0 C {Vl , . . . ,vk}* be the set of monomials, without 

their coefficients, appearing in P,  and let X be the set of prefixes of words in X0. 

For any ~/#  0 E V, we construct ( h i , . . .  ,ak) �9 92k such that  {~/x(a)[ x �9 X} is 

an independent family. It  then of course follows that  ~P(a) ~ O. 

The induction starts with X = {1}. Then any U r 0 will do. Let now X 

contain at least two elements, and let y = Vp.. .  vqvr be a longest element of X.  

By induction, there exists a �9 92k such that  Y0 = {ux(a)[ x �9 X \ {y}} is an 

independent family. If uy(a) is linearly independent from ]I0, we have nothing to 

do. Otherwise, take ~ = ~(vp. . .  Vq)(a) and Y = Y0 \ {~}- Since Y is separated 

by 92, there exists b �9 92 with Yb = 0 and ~b r (Y, ~). Set a~ = ai for i ~ r, and 
! 

a r = ar + b. Then {ux(a!)[ x �9 X} is an independent family. | 

Proof of Theorem 3.10: The algebra 92 is a subalgebra of ~3, which by definition 

is a subalgebra of ~ M~ n. We may therefore assume that  92 is a subalgebra of 

End(V) for the vector space V = l i m k X  n. 

Let Y be a finite-dimensional subspace of V, and let ~ r V be arbitrary. 

Let 71 -n be the projection V --+ k X  n. Since Y is a closed subspace, there exists 

n C N such that  v = zrn(~) r 7rn(Y), and furthermore such that  there is also 

w C zcn(V) linearly independent from v and ten(Y). By Lemma 3.4 there exists 

a C 92 which annihilates Y while it sends v to a multiple of w. Consider all 

possible such a; if they all annihilated (,  then they would also annihilate the 

orbit of ~ under Pu92, where Pu E Mx~ denotes projection on u; since they also 

annihilate V(1 - Pu), they would all annihilate V, whence a = 0 because the 

representation V is assumed faithful. This contradicts the condition that  92 is 

weakly branch. 

We may therefore apply Proposition 3.11 to conclude that  92 is not PI. | 

In analogy with Proposition 2.6, we have: 

PROPOSITION 3.12: Let 92 be an art algebra which is weakly regular branch, 

with branching ideal J~. Assume that t~ is prime. Then Z(92) = 1. 

Proof." Take x E 92, and assume that  x commutes with ~; we wish to show 

that  x is a scalar. For that ,  write r  = (Xuv), and compute r y | (u @ v)] 
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for all y E J~ and u, v C X.  This matr ix  vanishes except possibly in its u th  row 

and v th  column; the (u, v)-entry is xuuy - yxvv, and for v' ~ v and u' ~ u the 

(u, v ' ) -ent ry  is y x w ,  and the (u' ,  v)-entry is xu,~y. 

If  all those entries are to  vanish, then xuvs  = Ftxuv = 0 for all u ~ v, so 

Xuv = 0 because ~ is prime. Similarly xuu = x w  for all u, v, so r  = xuu | 1 

for any u. Finally [xuu,~] = O, so the argument  can be applied to Xuu to  show 

tha t  Cn(x) is scalar for all n. 

Now if x were not  scalar there would be u, v C X n for some n large enough, 

such tha t  Xuv ~ 0 or xuu 7 ~ Xvv. | 

3.3.2. Compatible filtrations. Let 91 be the tree enveloping algebra of a regular 

branch group G. We have three descending filtrations of 9.1 by ideals, namely 

powers of the branching ideal (Rn), powers of the  augmenta t ion  ideal (wn),  and 

( M x - ( ~ ) ) .  

PROPOSITION 3.13: Assume that there is an n C N such that M x - ( ~ )  is con- 

tained in ~2. Then the normal subgroups of  G c o n t r o l  the ideals of  91: given 

any non-zero ideal ~ < 9A, there ex/sts a non-trivial normal subgroup H ~G with 

H -  l c ; J .  

Proof: By Theorem 3.9, there is n E N such tha t  ~ contains Mxn-1 (R2), so 

contains M x . ( ~ ) .  Set H = r  then ~ contains H - 1. | 

COROLLARY 3.14: Assume that there is an n C N such that M x n ( ~ )  is 

contained in ~2. Then 91 is just-infinite and prime. 

Proposi t ion 3.13 may  be used to  obtain  some information on the Jacobson 

radical of  91: 

LEMMA 3.15 ([43, Corol lary 4.4.3]): Let  k be a field of  characteristic p; let G 

be a just-infinite-p group (i.e. an infinite group all o f  whose proper quotients are 

finite p-groups), and let 9.1 be a quotient o f k G .  Assume that normal  subgroups 

of  G control ideals of  91. Then either rad P2 = 0 or rad 91 = w. 

Proof'. rad91 < w since w is a maximal  right ideal. I f  radP2 ~ 0, then there is 

a non-trivial  H,~ G with H - 1 C rad 9./. Since G / H  is a finite p-group, 91/rad 91 

is a nilpotent algebra, so is 0, and rad 92 = w. | 

This in tu rn  gives control on representations of 91, by the following result due 

to  Farkas and Small: 



VOI. 154, 2006 BRANCH RINGS, THINNED RINGS, TREE ENVELOPING RINGS 117 

PROPOSITION 3.16 ([18]): Let 91 be a just-infinite, semiprimitive, finitely 

generated k-algebra over an uncountable field k. Then either 92 is primitive, 

or 92 satisfies a polynomial identity. 

Since weakly branch art algebras satisfy no polynomial identity (Theorem 3.10) 

they adnfit irreducible faithful representations as soon as they are semiprinfitive. 

The following are well known: 

PROPOSITION 3.17 ([28, Chapter 4]): 

�9 I f  91 is a just-infinite k-algebra and contains a transcendental element, 

then ~ has no non-triviai nil ideal. 

�9 I f  ra~t 91 is algebraic, then it is nil. 

�9 If91 is countably generated and k is uncountable, then the Jacobson radical 

rad 91 is nil. 

�9 I f  x C ~ is transcendental and k is uncountable, then there exists a E k 

with 1 - a x  not left-invertible. 

Agata Smoktunowicz has been kind enough to explain the following 

connection to me: 

COROLLARY 3.18: I[ ~ is just-infinite, finitely generated over an uncountable 

field k, and contains a transcendental element, then 91 is primitive. 

3.3.3. The tree enveloping algebra of P. Consider as in w a subgroup P 

of ~ x ,  and its tree closure P < Aut(X*). It is regular branch, with branching 

subgroup P. 

PROPOSITION 3.19: Let 91 be the tree enveloping Mgebra of P, and let q3 be 

the image in M x  o f k P .  Then 91 = ~3. 

Proof: Since ~ < q3, it suffices to show that  tile natural map k P  --* q3n is onto 

for every n. Let w denote the augmentation ideal of kP;  then 

~b(kP) = M x ( w )  + 1 | ~3, 

and therefore Cn(kff) = M x - ( w )  + 1 | ~3n, and the result follows. II 

The algebra q3 can be defined in a different way, following [43]. Tile group 

P is a profinite (compact, totally disconnected) group, and therefore kff  is a 

topological ring. Consider the ideal 

(9) ~ - - ( ( v * g - 1 ) ( w * h - 1 ) : v # w e X n f o r s o m e n ; g ,  hE-P}  
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m m 

in kP.  On the one hand, 3 has trivial image in 9 ,  since Cn(v * g - 1) and 

Cn(w * h - 1) are diagonal matrices with a single non-zero entry, in different 

coordinates v, w. On the other hand, all relations in the matrix ring Mx~ (kP) 

can be reduced to these. It  follows that  ~ equals k P / 3 ,  where 5, the "thinning 

ideal", denotes the closure 5 of 3 in the topological ring kP.  More details appear 

in w 

For any recurrent group G, we may now consider G as a subgroup of some P,  

and therefore kG is a subalgebra of kP.  The tree enveloping ring of kG is then 

kG/ ( k G  N -~). This was the original definition of tree enveloping rings. 

3.4. LIE ALGEBRAS. In this subsection, we let p be a prime, k = Fp, and 

fix X = {1 , . . .  ,p}. Let G be a recurrent subgroup of Wp, with decomposition 

r G --* G ~ Cp where Cp is the cyclic subgroup of |  generated by (1, 2 , . . . ,  p). 

We define the d i m e n s i o n  ser ies  (Gn) of G by G1 = G, and 

Gn = ([g,h]k p : g E G,h e G n - l , k  E Gr~lpl). 

Since G is residually-p, we have N Gn = {1}. 

The quotient Gn/Gn+I is an Fp-vector space, and we form the "graded group" 

n ~ l  

Multiplication and commutation in G endows gr G with the structure of a graded 

Lie algebra over Yp, and x H x p induces a Frobenius map on g~G, turning it 

into a restricted Lie algebra. 

The dimension series of G can be alternately described, using the augmenta- 

tion ideal w of FpG, as 

Gn = {g C G[ g -  1 e wn}.  

Furthermore, consider the graded algebra g tFpG = (~n>0 van~ wn+l associated 

to the descending filtration (w n) of FpG. Then 

PROPOSITION 3.20 (Lazard [30, Th~or~me 6.10]; Quillen [41]): 9rFpG is the 

restricted enveloping algebra of g~ G. 

3.4.1. Graded tree enveloping algebras. Let 9 /be  the tree enveloping algebra of 

the regular branch group G, and assume that  9/is a graded algebra with respect 

to the filtration (van). Then g~ G embeds isomorphically in 91. 

5 Note that [43] does not mention this closure, although it is essential. 
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PROPOSITION 3.21: Assume that 92 is a quotient of flrFpG. Then the natural 

map fl1:G ~ flrFpG induces an embedding grG ~ 91. 

Proof: Let a E fie G be such that  its image in 91 is trivial. Then, since 92 is 

graded, all the homogeneous components of a are trivial. But these homoge- 

neous components belong to quotients Gn/Gn+l along the dimension series of 

G, and since G ~-+ 91, they must be trivial in Gn/Gn+l. We deduce a = 0. | 

If we forget for a moment the distinction between kG and g :kG,  Proposi- 

tion 3.21 can be made more conceptual, by returning to the "thinning process" 

described after (9): assume G factors as A • B. Then kG = kA | kB, and the 

"thinning" process maps kG to 

kG/~ = (kA G kB) /{(1 ,0)  = (0, 1)}, 

w i t h ~  = w ( k A ) |  We have 0 :A  C kA and kB C kB and g : G  = 

9~: A | ~: B C kG/3. It is in this sense that  thinning "respects" Lie elements. 

More details are given in w 

Proposition 3.21 applies in particular to the group P and its tree enveloping 

algebra q3. This points out the recursive structure of 9: P,  as described in [13]. 

3.5 .  GELFAND-KIRILLOV DIMENSION. Let 92 be an algebra (not necessarily 

associative), with an ascending filtration (~n)nez by finite-dimensional sub- 

spaces. Assume ~n = 0 for negative n. Then the H i l b e r t - P o i n c a r 6  series of 

91 is the formal power series 

O O  

O~(t) = E antn = E dim(;~n/an-1)tn" 
n=0 n>0 

In particular, if 2[ is generated by a finite set S, it has a standard filtration 

defined as follows: ~n is the linear span of all at-most-n-fold products sl . . .  sk 

for all k < n, in any order (if 91 is not associative). 

If 92 = (~n>0 92n is graded, we naturally filter 92 by setting ~n = 920 + " "  +92n. 

If dim~n grows polynomially, i.e. pl(n) <_ dim~n < p2(n) for polynomials 

Pl, P2 of the same degree, then 91 has p o l y n o m i a l  g ro w th .  More generally, if 

dim ~n is bounded from above by a polynomial, the (lower) G e l f a n d - K i r i l l o v  

dimension of 92 is defined as 

log dim ~:n 
GKdim(91) = lim inf 

n--,~ log n 
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If 92 is finitely generated and ~n is the span of at-most-n-fold products of 

generators, then this limit does not depend on the choice of finite generating 

set. 

If 92 is finitely generated and either Lie or associative, then the coefficients an 

may not grow faster than exponentially. A wide variety of intermediate types 

of growth patterns have been studied by Victor Petrogradsky [38, 39]. 

Let G be a group, with Lie algebra ~r G. Then the Poincar~-Birkhoff-Witt 

Theorem gives a basis of gCFpG consisting of monomials over a basis of gCG, 

with exponents at most p - 1. As a consequence, we have 

PROPOSITION 3.22 (Jennings [26]): Let G be a group with dimension series 

(Gn), and set gn = dim~(Gn/Gn+l) .  Then 

o0 ( l _ t P n ] , "  

�9 = H 1 - t ~  J n=l 

Approximations from analytic number theory [32] and complex analysis give 

then 

PROPOSITION 3.23 ([40], Theorem 2.1): With the notation above for gn, and 

an = d imwn/va  n+l, we have 

(1) {an} grows exponentially i f  and only i f  {gn} does, and we have 

In gn In an 
lim sup - -  = lim sup 

n~oo n n-~oo n 

en(d+l)/(d4-2) (2) I f  gn "~ n d, then an ~ 

A lower bound on the growth of a group G may be obtained from the growth 

of FpG: 

PROPOSITION 3.24 ([23], Lemma 8): Let G be a group generated by a finite 

set S, and let f (n )  be its growth function. Then 

f (n)  >_ d i m ( w n / w  n+l) for all n E N. 

It follows that if  gr G has Gelfand-Kirillov dimension d, then G has growth at 
least exp(n(U+l)/(u+2)). 

It follows that  a non-nilpotent residually-p group has growth at least exp(v/n). 

It also follows that  1-relator groups that  are not virtually abelian have expo- 

nential growth [17]. 
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THEOREM 3.25: Let G be a contracting group in the sense ofw acting on 

the tree X*. Let 91 be its tree enveloping algebra. Then P2 has GeIfand-Kirillov 
dimension 

(10) GKdim(91) < 2n l~ 
#x. 

- - l o g  A '  

in particular, if (X  ~, , )  has polynomial growth of degree d, then 92 has Gelfand- 
Kirillov dimension at most 2d. 

Proof: Let S be the chosen generating set of G, and write f ( r )  = dimk(kSr). 

Then by contraction 
kS r C Mx~ (ks~r+g), 

so f ( r )  <_ #X2'~f(Ar + K).  It follows that  log f ( r ) / l og  r converges to the value 

claimed in (10). 

The last remark follows immediately from Proposition 2.8. | 

QUESTION 3: Assume furthermore that G is branch. Do we then have equality 
in (10)? 

4. E x a m p l e s  of  t r e e  enve lop ing  a lgeb ra s  

We describe here in more detail some tree enveloping algebras. Most of the 

results we obtain concern the Grigorchuk group. They are modeled on the 

following result. Said Sidki considers in [43] tile tree enveloping algebra 92 of 

the Gupta-Sidki group F of w over the field F3. He shows: 

THEOREM 4.1: 

(1) The group F and the polynomial ring ]F3[t ] embed in 91. 

(2) The algebra 91 is just-infinite, prime, and primitive. 

4.1. THE "THINNING PROCESS". We recall and generalize the original con- 

struction of 91, since it is relevant to w Let G ~-* G I P  be a recurrent group, 

with P < |  Let ~ = kG be its group algebra. Then we have a natural map 

~ ~ x  ~ p = ~ X ~ k p ,  

where 91 )4 P designates the crossed product algebra; the | indicates the tensor 

product as vector spaces, with multiplication 

( l |  |  | gq~l)  -- (gl~ |  | g q ~ l )  | ( l |  
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for all g l , . . . ,  gq E G and 7r E P.  
We wish to construct a quotient of ~ which still contains a copy of G. For 

this, let wi denote, for all i E X, the augmentation ideal of the subalgebra 
k |  | ~ @ ..- | k - 5, with the '~' in position i; and let 2i denote the ideal 
in k P  generated by {Tr - 11 i" = i}. Set then 

3= ~ w ~ w j Q k P + E w |  N k |  
i ~ j E x  s e x  i E x  

LEMMA 4.2 ([43, w ~/3  ~ Mx(~). 

This process can then be iterated, by thinning the '~' on the right-hand side 
of the above; the limit coincides with the tree enveloping ring of G. 

4.2.  T H E  GRIGORCHUK GROUP. From now on, we restrict to the Grigorchuk 
group G defined in w There are two main cases to consider, depending on 
the characteristic of k: tame (5  2) or wild (= 2). 

We begin by some general considerations. As generating set of G we always 
choose S -- {a, b, c, d}, and we may again choose S as generating set of its tree 
enveloping algebra 91. 

Since G's decomposition is r G ~-* G ~ C2, the ring ~ is the linear envelope of 
the representation of C2 on two points, i.e. the group ring of C2: 

If k has characteristic 2, this is the nilpotent ring kit]/(t2); in tame characteristic, 
V=kek.  

Following Theorem 3.7, we may rewrite G's decomposition (6) as a map 

r 91 - ,  M2(91): 

(11) a H  (~ 10) , b H  (0  : ) '  c H  (0  : ) '  d ~  (10 ~) .  

THEOREM 4.3: The algebra 9.1 is regular branch, just-in/inite, and prime. 

Proof: 92 is regular branch by Theorem 3.7. By Lemma 3.8 and Theorem 3.9 

it is just-infinite and prime. I 

Aria Cristina Vieira proved in [44, Corollary 4] that  91 is just-infinite if k = F2. 
Actually her arguments extend to arbitrary characteristic, and also show that 

91 is prime. 
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4.2.1. Characteristic ~ 2. In this subsection, let k be a field of characteristic 

different from 2. 

PROPOSITION 4.4: The  algebra 92 is semiprimitive.  I f  fur thermore k is 

uncountable, then 92 is primitive.  

Proof: The ring 92 admits finite-dimensional quotients 92n = 92/~n = zrn(92) �9 

Since k was assumed of characteristic r 2 and 92n is a quotient of the group 

algebra of a 2-group, it is semisimple and therefore rad 92 _< ~ n  for all n, so 

tad 92 = 0. 

If k is uncountable, then 92 is primitive by [4, 36]. | 

QUESTION 4: Is 92 primit ive for k = Q or Fp with p ~ 2? 

PROPOSITION 4.5: The  algebra 92.1 has relative Hausdorf f  dimension Hdimv(92) 

equal to 1. 

Proofi This is a reformulation of [10, Theorem 9.7], where the structure of the 

finite quotient ~rn(92) is determined for k = C. The result obtained was 

n-1  

= c +  M2,(C) .  
i=0 

It follows that  7rn(92) has dimension (4 '~ + 2)/3. The proof carries to arbi trary 

k of characteristic ~ 2. | 

The algebra 92 does not seem to have any natural  grading; indeed if w 

denote the augmentation ideal of 92, then w 2 = ~v, because cv is generated 

by idempotents �89 - a), �89 - b), �89 - c), �89 - d). As a side note, the Lie 

powers w [n] of w, defined by w [1] = w and 

w [~+1] = 92{xy - yx[ x E ~[~], y C w}92, 

also seem to stabilize. 

The following presentation is built upon Proposition 2.10. Since the proof is 

similar to that  of Theorem 4.15, we only sketch the proof. 

THEOREM 4.6: Consider the endomorphism a o f k  { a, b, c, d} defined on its basis 

by 

(12) a H aca, b H d, d ~ c, c ~ b 
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and ex tended  by linearity. Then  

(13) 92= (a ,b ,c ,d[a  2 = b  2 = c  2 = d  2 = b c d =  l ,  

an ( (d  - 1)a(d - 1)) = an( (d  - 1)a(d acac - 1)) = 0 Vn k 0}. 

Proof." Let ~ be the free associative algebra on S; define r ~ --~ M2(~) using 

formula (11). Set 30 = (a 2 -1 ,  52-1,  c 2 -1 ,  d 2 -1 ,  bcd-1),  3n+1 = r  

and ~ = [-Jn>o 3n- We therefore have an algebra PA t = ~/3,  and since an easy 

check shows that  the relations above hold in 92, we have a natural map ~r: 91' --* 91 

which is onto. We show that  it is also one-to-one. 

Take x E ker 7r. Then it is a finite linear combination of words in S*, so there 

exists n E N such that  all entries in ~pn(x) are linear combinations of words 

of syllable length at most 1, where a's and {b, c, d}'s are grouped in syllables. 

Since they must also act trivially on kX ~, they belong to 30; so x E 3n. 

It remains to compute 3n. First, 31/30 is generated by all (d ~ - 1)a(d v - 1) 

for u, v E {a, b, c, d}* with an even number of a's. It is sufficient to consider 

only u -- 1; and to assume that  v contains only a's and c's; indeed d's can be 

pulled out to give a shorter relator of the form (d - 1)a(d '~ - 1), and b's can 

be replaced by c's by the same argument. Using the previous relators, we may 

then suppose that  v is of the form (ac) 2k. 

Next, the relators rk -- (d - 1)a(d (ac)2~ - 1) C 31 lift to generators an(rk )  of 

3 n + 1 / 3 n -  

Finally, using the relator a(ro)  = cacac - aca, we see that  it is sufficient to 

consider the relators a'~(ro) and an(r1) .  | 

Although we may not grade 91, we may still filter it by powers of the generating 

set S. We give the following result with minimal proof; it follows from arguments 

similar to, but harder than, those in Proposition 4.17. 

THEOREM 4.7: The  algebra P2 has quadratic  growth;  therefore its Gel fand-  

Kiri l lov dimension is 2. 

More  precisely, set  ~n : )-]i=0n k S  i and an : dim ~n/~n--1. Then  al = 4, a2 = 

6, a3 = 8, a4 = 10, a5 = 13, a0 = 16, and for n > 7 

{ 4 n - 3 2 k  i f 2  k < n < 5 2k, 

3n _Z21 k if 52k < n < 32k, 
(14) an  = k n + - -  i f -  < n <  �88 k, 

2n + 2 k i f  72k < n < 2 k+l. 

I t  follows for example  that ,  i f  n is a power  o f  two greater than 4, then 

2 
d i m ~ n = ~ n  2 +  n + ~ .  
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Note tha t  91 has Gelfand-Kiri l lov dimension at most  2, by Theorem 3.25; 

furthermore,  it cannot  have dimension 1 since 91 satisfies no polynomial  identi ty 

by Theorem 3.10, so by Bergman ' s  gap theorem [27] it has dimension 2. 

LEMMA 4.8: Set x = ab - ba and let Y~ = 91x91 be the branching ideal of 91. 

Then 91/J~ is 6-dimensional, and fi /M2(N) is 20-dimensional. 

Proof: The codimension of r is at most  16, which is the index of K in G. 
1 We then check y = (1 + b)(1 - d) E Y, because y = g ( c -  1)xay, and we use 

( d - 1 ) a ( d - 1 )  = 0 to see tha t  the codimension of ~q is at most  6, with transversal  

{1, a, d, ad, da, ada}. These elements are easily seen to be independent  modulo  

The  assertion on .~/M2(J~) has a similar proof. | 

Sketch of the proof of Theorem 4.7: The first few values of an are computed  

directly. We consider the filtrations ~n = ~n N J~ and ~ n  = ~n N M2(J~) of 

and M2(~) respectively. For n _> 3 we have d i m ~ n / ~ n  = 6, and for n _> 6 we 

have dim ~,~/~n = 20. I t  follows tha t  an = d i m ~ n / ~ n - 1  for n large enough, 

and we place ourselves in tha t  situation. 

A word w E S* is r e d u c e d  if it al ternates between a-letters and {b, c, d}- 

letters. Every group element in G can be represented by a reduced word. We con- 

struct  the following refinement of the filtration (;~n): we denote by ~at the linear 

span of those words w E S* which either have length <_ n - 1 or are reduced, of 

length n, star t  in a, and end in {b, c, d}. We define similarly ~ta .~aa 2gtt We n , t ) n  , t ) n *  

aa t t  ~ a t  ~ t a  ~ a a  q ) t t  I f  n is set ~ t  = ~ t  N ~, and define similarly ~ta, ~n , ~n , - -n  , ~ n  ' ~ n  , ~n"  
_ a t  t a  even, then ~ n  - ~ n  + ~ n ,  while if n is odd, then ~ n  = ~ + ~ -  

The  following equalities are not hard to  check; the "C" par t  comes from 

the contract ion of G's decomposi t ion map,  and the "_D" par t  comes from a 

construct ion using the endomorphism a of (12). For n _> 3 we have 

~ 4 n  : ~ 4 n - 1  -[- ~ t n  -[- ~ i  a 0) ta 0 q- n ta 
: ~ 4 n - 1  -~- n ~ t  ~2n  

0) 
= ~4n- -1  "~- n ~2n 

and similarly 

~4n+1 ~4n "~- aa tt \ ~'2 ( "eOatn = ~4n+l  -t- ~4n+l  = ~4n  -t- 



126 L. BARTHOLDI Isr. J. Math. 

f~at ~_ ~ta 
~4n+2 ---- ~4n+l § ~J4n+2 T ~4n+2 

( 0  aa) (0 ~2 +1) ~ 2  +1  tt 

\~2n-t-1 ~2n+l 

---- ~4n+l § ~2n+l 

aa tt ( t o ~4n+3 = ~4n+3 + ~4n+3 = ~4n+2 + ~2 +1 

These equalities give 

aan+x = d i m ( ~ a / ~ 2 n - 1 )  + dim(~tn/~2n-1)  + d i m ( ~ + l / ~ 2 n )  

im t t  + d (~2n+l/~2n) ~- a2n § a2n+l, 

a4n+2 ---- 2 dim(~2n+l/~2n) = 2a2n+l, 

�9 i m  a t  a4n+3 -- d im(~t t+ l /~2n)  + d l m ( ~ + l / ~ 2 n )  + d (~2n+2/~2n+1) 

+ dim(~ta+2/~2~+l) = a2n+l + a2n+2, 

0 0 ~2 +2 

from which (14) follows. | 

4.3. THE GRIGORCHUK GROUP IN CHARACTERISTIC 2. If we let k be a field 
of characteristic 2, then sharper results appear. To state them, it is better to 

choose another generating set for 91, and throughout this subsection we assume 

S = {A ,B ,C ,D} ,  with A -- a -  1, B -- b -  1,C = c -  1, D = d -  1. In that 
notation, the augmentation ideal w of 91 is generated by S, and 9.{ is generated 

by S as an algebra with one. 
We first recall, in a more concrete form, the results stated above for general 

k. 

PROPOSITION 4.9: The algebra 91 is recurrent; its decomposition map r : 91 -~ 

M2(91) is given by 

(15) A H  (11 11) , B~-~ ( A  O ) ,  C H  (A DO), D H  (00 B0). 

Proof: The expression of r follows from the definition. Upon inspection, one 

sees 1, B, C and D in the (2,2) corner as r  r  r  and r  then 
r  § C) gives an A in the (2, 2) corner, so projection on the (2, 2) corner 
is onto�9 For the other corners, it suffices to multiply the above expressions by 
1 § A on the left, on the right, or on both sides to obtain all generators in the 

image of the (i,j) projection. | 
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THEOREM 4.10: The relat ive Hausdorff dimension of 92 is Hdimv(92) = 7/8. 

Proof: Let 92n be the  finite quotient  ~rn(92) of 92, and set bn = dim92n. Then  

b2 = 8 by direct examinat ion ,  and one solves the  recurrence,  for n _> 3, 

bn+l = dim 9 2 n  = dim 92/N + d im 71 "r~nul (~) 

= 6 + dim(N/M2(J~)) + 2 2 d im 7rn(,q) = 6 + 8 + 4(bn - 6) 

to  bn = (14 .4  n-2  + 10)/3. This  gives Hdim(92) = 14/24, and Hdim~(92) = 7/8. 
| 

Let H be the stabilizer in G of the  infinite ray 1 ~~ E X~;  then  by [10] it is a 

weakly max imal  subgroup,  i.e. if H ~< I _ G then  I has finite index in G. I t  

follows tha t  the  right ideal ~ = ( H  - 1)P2 is a "weakly maximal"  right ideal, i.e. 

if ~ ~< 3 _< 92 then  3 has finite codimension in 92. Since the  core of ~ is trivial,  

it follows tha t  92 admi t s  a faithful module  92/3 all of  whose quot ients  are finite. 

This  is none other  t han  the  original representa t ion  on kX*.  

PROPOSITION 4.11: The ideM ~ has Gelfand-Kiriflov dimension 1; i.e. the 
dimensions of the quotients ~ N w n / 3  N w ~+1 are bounded. 

Proof: This  is a reformulat ion of [7, L e m m a  5.2], where  the  uniseriali ty of the  

modules  natura l ly  associated with  X m is proven. | 

From now on, we identify 92 with  its image in M2(92). We also commi t  the 

usual crime of identifying words over S wi th  their  corresponding elements  in 92. 

Set 

(16) 7~0 = {A 2, B 2, C 2, D 2, B -t- C T D, BC, CB,  BD,  DB,  CD, DC, DAD}.  

We also set T = {B, C, D}. 

LEMMA 4 .12 :A11  words in 7~o are trivial in 92. Fur thermore ,  the last re la tor  

is part of  a more  general pattern: DwD is trivial for any  word w E S* with 

Iwl - 1 mod  4. 

Proof: Clearly A 2 = 0. Then  B + C + D  = (~ 0 B+C+D) SO B + C + D  

acts tr ivial ly on k X  ~ and is therefore trivial.  Given any x, y E T we have 
yr xy = (o ~,o,) for some x', E T and these  are therefore also relations. Finally, 

let w E S* be a word of length 4n + 1. Clearly, by the  above,  DwD = 0 unless 

possibly if w is of the  form Axl  . . .  Ax2n A for some xi E T.  Then  

w =  (Wli  w12~ 
\W21 W21] 
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where each w~j is a linear combination of words that either start or end in T; 

multiplying on both sides with D = (0 o )  therefore annihilates DwD. | 

4.3.1. A recursive presentation for 91. Consider the substitution a: S* --~ S*, 

defined as follows: 

A ~  ACA, B ~  D, C ~  B, D ~ C .  

We say that  a word w 6 S* is an A -- T w o r d  if its first letter is A and its 

last letter is in T; we define similarly A + A, T + A, and T + T words. An +A 

w o r d  is a word ending in A, and +T,  A+  and T +  words are defined similarly. 

LEMMA 4.13: Let w 6 S* represent an element of ~. Then in 91 we have 

= 
w 

Note in particular that  because of the four exceptional cases for T + T words, 

the map a does not induce an endomorphism of Pl. It seems that there does not 

exist a graded endomorphism 7- of 91 with r = w for all long enough 

w 6 S * .  

Proof'. The induction starts with the words B, CAC, CAD, DAC, DAD. If for 

example w is a A + T word, we have a(w)= (0 ww), and therefore 

where wD = 0 because w ends in a letter in T. | 

PROPOSITION 4.14: The algebra 91 is regular branch. 

Proof: This follows from Theorem 3.7. Alternatively, consider the ideal 

= (ADA, AB, BA I. 
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Compute dim(91/J~) = 6, with 91 = ~ G (1, A, B, D, AD, DA). Next check 

o 

giving M2 (J~) _< .~. We have dim.~/M2 (N) = 8, because 

~ = M2(N) @ (ADA, AB, BA, ABA,  BAB,  ABAB,  BABA,  ABABA) .  

We may also easily check that  N/N2 is 12-dimensional, by 

~2 = ~ | (AB, BA, ABA,  ADA, BAB,  BAD, DAB, 

AB AD , AD AB , B A D A, DAB A, DA B  AD ). 

THEOREM 4.15: Let ~o be as in (16). Then the algebra 91 admits 

presentation 

00) = CACAC = C(ADA)C + CA(BA)C  �9 ~, 

00) = CADA = C(ADA) �9 ~, 

00) = ADAC = (ADA)C �9 ~, 

II 

the 

91 = (A, B, C, D17r an(CACACAC),  an(DACACAD)  for a/1 n _> 0). 

COROLLARY 4.16:91  is graded along powers of its augmentation ideal w. This 
grading coincides with that defined by the generating set S. 

Proof: All relations of 91 are homogeneous - -  they are even all monomial, 

except for B + C + D. | 

Proof of Theorem 4.15: Let ~ be the free associative algebra on S; define 

r ~ -~ M2(~) using formulm (15). Set ~0 = (~0),  ~n+l = r  and 

= f-in>0 ~n. We therefore have an algebra 91~ = ~[/~, with a natural  map 

~r: 9s ~ 91 which is onto. We show that  it is also one-to-one. 

Take x E ker 7r. Then it is a finite linear combination of words in S*, so there 

exists n C N such that  all entries in Ca(a) are words in A* or T*. Since they 

must also act trivially on k X  ~, they belong to ~0; so x C ~n- 

It  remains to compute ~n. First, ~1/~0 is generated by all DwD with ]w I -- 

1 mod4,  which map to 0 E ~/30, and CACACAC,  which maps to DA D = 0 C 

~/~0. Using the relation r0 = DAD, we see that  all DwD are consequences 

of rl = D A C A C A D  and r2 = CACACAC.  For example, D A C A B A D  = 
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rl + DACAro,  r~ = D A B A B A D  = D A C A B A D  + roABAD,  and for n _> 2, by 

induction 

, D ( AB) 2nAD r~n_IABAD+r~n_2ABACABAD r r t  ~ 

+ D ( A B ) 2 n - a A ( C A B A C A r o  + CArl  + r2AD). 

Finally, the relations r l ,  r2 C ~1 lift to generators an(r1), an(r2) of ~nT1/~n. 
| 

PROPOSITION 4.17: Successive powers of the augmentation ideal of 91 satisfy, 

for n > 3, 

32k 2n - �89 2 k i f  2 k < n < -~ , 
d i m ( w n / w  n+l) 

I n +  2 k i f  32 k < n < 2 k+l. 

I t  follows that ,  although kG has large growth, namely d i m ( w n / w  n+l) 

exp(x/'~) in kG by Proposition 3.24, the growth of its quotient 91 is polynomial 

of degree 2: 

COROLLARY 4.18: The algebra 91 has quadratic growth; therefore its Gelfand- 

Kirillov dimension is 2, both as a graded algebra (along powers of vz), and as a 

finitely generated filtered algebra. 

Proof of Proposition 4.17: Assume n > 3. Then we have 

(17) 

(18) 

0)) 

Indeed consider a generator w E S* of W 2n. Then w is a word of length 2n, so 

is either a A + T word or a T + A word. I t  follows that  r  = (0 u) or (o o) 

for some u E S n, and the 'C_' inclusion is shown. 

Conversely, take u E Sn; if the length of u is even, then u is either a T + A 

word or a A - T w o r d ,  and set w -- (r(u). If [u[ is odd, then u is either a 

T + T word, and consider w = a(u)A  and Aa(u) ,  or it is a A + A word, and set 

w' = a(u) and w = w ~ with its first or last letter removed. In all cases, w is a 

word of length 2n, and r  = (0 ~ u) or (o o),  which shows the '_D' inclusion. 

A similar argument applies to (18). 
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Set an = dim(wn/wn+l). Then it is easy to compute 

92/  = (1) 

w / w  2 = (A, B, D) 

w2/w 3 = (AB, BA, AD, DA) 

w3/w 4 = (ABA, ADA, BAB, BAD, DAB) 

w4/vz 5 = (ABAB, ABAD, ADAB, BABA, BADA, DABA) 

vz5/w 6 = (ABABA, ABADA, ADABA, BABAB, 

BABAD, BADAB, DABAB, DABAD) 

and formulse (17) and (18) give 
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giving a0 = 1, 

giving al = 3, 

giving a 2 ---- 4, 

giving a 3 ---- 5, 

giving a4 = 6, 

giving a5 = 8, 

a2n ~ 2an, a 2 n + l  ~ an + an+l, 

from which the claim follows. | 

We now show that  the filtrations of 92 by (wn), (j~n) and (Mxn(St)) are 

equivalent: 

PROPOSITION 4.19: For all n E N we have 

~i:73n _~ j~n <~ ~u2n, 

Z :U3"2n ~ M x ~  (J~) <_ Z ;U2"2~- 

Proof: To check the first assertion, it suffices to note that  all non-trivial words 

of length 3 in S, namely (AB)A, ADA, (BA)B, (BA)D, D(AB), belong to ~, 

while all generators of J~ lie in w 3. 

To check the third inclusion, take w c $3"2~; then On(w) E Mx-(w3) .  To 

check the fourth inclusion, take a generator w of ~, and consider v = an(w). 
Since [w I >_ 2, we have Iv l > 2 . 2  n so v �9 w 2"2'~. | 

4.3.2. Laurent polynomials in 92. It may seem, since 92 has Gelfand-Kirillov 

dimension 2, that  G contains "most" of the units of 92. However, G has infinite 

index in 92• and contains an element of infinite order: 

THEOREM 4.20:92 contains the Laurent polynomials k[X, X - l ] .  

Proof: Consider the element X = 1 + A + B + AD. It is invertible, with 

Z - 1  ~- (1 + B)(1 + AC)(1 + ACAC)(1 + A). 
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Now to  show tha t  X is t ranscendenta l ,  it suffices to  show tha t  X has infinite 

order; indeed if X were algebraic,  it would genera te  a finite extension of a finite 

field, and therefore a finite ring; so X would have finite order. 

Among  words w E {A, B, AD}*, consider the  set W of those of the  form 

w = (AB) i lAD(AB) i2AD. . .  (AB) ~. 

These  are precisely the  words s ta r t ing  by an A, and ending by a B or a D. 

Define their  l e n g t h  and w e i g h t  as 

s t 
Lwl =  (2ij + 2), IIwll --  (2ij + 1). 

j = l  j = l  

Consider the  words wn defined i terat ively as follows: wl = ADAB,  and 

wn = T(Wn-1) where r is the  subs t i tu t ion  ~-(AB) = (ADAB)3(AB) 2, T(AD) = 
(ADAB)  4. Then  

(~ 11)  (10 00) 
Define a(n) = ( 2 2 . 8  n - 1)/7. T h e n  [wn[ = 4 . 8  n and [[wn[[ -- a (n) ;  and wn 

is the  unique s u m m a n d  of X ~ in W tha t  belongs to  w 4"sn. This  proves t ha t  

all powers of X are distinct.  | 

Note  t h a t  Georgi Genov and P l amen  Siderov show in [20] t ha t  (1 + A ) ( B  + C),  

(1 + A)(B + D) and (1 + A)(C + D) have infinite order  in the  group ring of G. 

However,  they  project  to  nil-elements in 92. 

Evident ly  1 + X belongs to  the  augmenta t ion  ideal w,  and is also t ranscen-  

dental  - -  in par t icular ,  it is not ni lpotent .  However,  w contains many  nilpotent  

elements: 

PROPOSITION 4.21 ([44, T h e o r e m  2]): The semigroup {A, B, C, D}* \ {1} is nil 

of degree 8. 

Proof: Let w E S n be a semigroup element.  If  n is odd, then  w is ei ther  a 

T + T word or a A + A word, so w 2 = 0. 

I f  n = 2 (mod4) ,  then  ei ther  w contains a D, in which case w 2 = 0 by 

L e m m a  4.12, or r  2) contains D ' s  in its non-zero entries, in which case w 4 = 0; 

or r  contains D ' s  in its non-zero entries, in which case w s = 0. 

Finally, if n - 0 (mod4) ,  and n > 0, then  r  = (4 u) or (u : ) ,  for some 
~8 ~8 V8 

u, v E  S n / 2 w i t h u v - = v u - - O .  T h e n r  s ) - -  (u:  vs ) or (us v s ) , a n d w e a r e  

done by induct ion on n. II 
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4.3.3. Nillity and primitivity of 92. To understand the representation theory 

of 92, it is important  to determine whether 92 is primitive. This depends on the 

Jacobson radical of 92, by the following simple result: 

PROPOSITION 4 . 2 2 : I f 9 2  is semiprimitive, then it is primitive. 

Proof: Since 92 is semiprimitive, tad 92 = [~V q3 = 0, where the intersection 

is taken over all primitive ideals. However, if q3 r 0 is primitive, then it has 

finite codimension by Theorem 3.9, so 92/~3 is finite-dimensional, and therefore 

nilpotent, because 92/~3 is the quotient of the group ring of a finite 2ogroup, so 

q3 = w. The only way to have rad 92 = 0 is therefore that  0 be a primitive ideal. 
| 

PROPOSITION 4.23: I f  k is a field that is not algebraJc over F2, then 92 is 

primitive. 

Proof: Let t be transcendental over IF2, and let Y = A + B + A D c  92(•2) be 

transcendental, as in Theorem 4.20. Assume for contradiction that  Y c rad92. 

Then 1 - t Y  is right invertible, i.e. there exists r c 92 with (1 - t Y ) r  = 1. We may 

assume r �9 92(F2(t)), so (1 - tY)p( t )  = q(t) for p(t) �9 92(F2[t]) and q(t) �9 F2[t]. 

Again because 1 - t Y  is invertible, we have p(t) = q(t) ~i=0~176 t iy i .  Consider- 

ing this equality in degree higher than degp and writing q(t) = Q(t, 1) as a 

homogeneous polynomial, we get Q(1, Y) = 0 whence Y is not transcendental.  

Therefore rad92 # w, and rad92 = 0 by Lemma 3.15, so 92 is primitive by 

Proposition 4.22. II 

Note that  since ~ is primitive for k ---- ~ 2 ( t ) ,  it has a maximal right ideal 

L with trivial core, and therefore an irreducible faithful nonprincipal ~ module 

92/L. One may take any maximal ideal L containing (1 - tY)92 with Y as in 

the proof of Proposition 4.23; however, there does not seem to be any handy 

construction of such an L. On the other hand, the arguments in [37, w show 

that  there are infinitely many nonprincipal irreducible representations of 92. 

LEMMA 4.24 (A. Smoktunowicz): Let ~ be a graded algebra (without unit) 

generated in degree 1. Then the following are equivalent: 

(1) ~ is Jacobson radical; 

(2) Mn(3) is graded nifl for all n; 

6 I.e. not of the form eP2 for an idempotent e. Since 92 is graded with 1-dimensional 
degree-0 component, it has no idempotent except 0 and 1. 

7 Mn (9.1) is naturally Zn~-graded by grading all entries independently. 
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(3) Mn(31) is nil for all n, where ;31 denotes the degree-1 component 0[3. 

Proof: We denote by ~ the algebra 3 with a unit  adjoined. If  3 is Jacobson 

radical, then Mn(3) is radical for all n. Take x E Mn(~) ,  homogeneous of degree 

d. Then,  since 1 - x  E Mn(qd) is invertible, the sum ~ i > 0  xi must  converge; 

now the  component  of degree di of this sum is xi; therefore x i = 0 for i large 

enough. 

The  next implication is obvious. 

Finally, assume M~(3) is graded nil for all n, and choose x E 3; write x = 

Xl + .-- + xr  as a sum of monomials.  Furthermore,  write each monomial  xi, of 

degree di, as a product  xi = xi,1 . . .  xi,d, of monomials  of degree 1. Set 

A = {(i , j )]  1 < i < r, 1 <_ j < d~} U {(0,0)}. 

Const ruc t  the matr ix  X E MA(31) by 

xi, j+l if i = i r and j + 1 -- f ,  

~xi,,1 if ( i , j )  = (0,0) and j '  = 1, 
X ( i ' J ) ' ( i " J ' )  = [Xi,d, if j = d i  - 1 and ( i ' , j ' )  -- (0, 0), 

| ,~'~k:dk=lxk if ( i , j )  = ( i ' , j ' )  = (0,0). 

Since Mn(31) is nil, there exists N E N such tha t  X y = O. Now write formally 

(1 - x) -1 = 1 q- Yl q- Y2 -b . . .  as a sum of homogeneous components .  Then  
8 by induct ion (X)(0,0),(i,j) = ys - jx i ,1 . . . x i , j  if i > 1 and s > j ,  and Ys -- 

(X )(0,0),(0,0), therefore js 0 as soon as s > N,  and (1 - x) -1 exists, so 

x E rad 3 and 3 is Jacobson radical. I 

LEMMA 4.25: The algebra 91 is graded nil i f  and only if Mn(91) is graded nil 

for all n. 

Proof: Choose a homogeneous element x E Mn(91) of degree > 1. I t  costs 

nothing to  assume tha t  n is a power of two, say n = 2 t. Then  since w 3 _< 

by Proposi t ion 4.19, we have x 3 E Mn(~) ,  and therefore y = r  E ~ is 

homogeneous.  I t  follows tha t  y, and therefore x, are nil elements. I 

PROPOSITION 4.26: The algebra 91 is non-primitive if and only i f  it is graded 

nil (i.e. all homogeneous elements of degree >_ 1 are nil). 

Proof." Assume first tha t  91 is not  graded nil. Then  91 is not Jacobson radical 

by Lemma 4.24, so rad91 =- 0 by Lemma 3.15, and 91 is primitive by Proposi-  

t ion 4.22. 
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Assume next  t h a t  93 is g raded  nil. T h e n  Mn(92) is g raded  nil by L e m m a  4.25. 

By  L e m m a  4.24 the  ideal  w is Jacobson  radical ,  so rad  93 = w.  | 

We denote  below by 93n tim homogeneous  pa r t  of 93 of degree n. T h e  p roduc t s  

93n~ "'" 93nk etc. are  to  be  unde r s tood  as setwise p roduc t s ,  and  not  l inear  spans  

of products .  

LEMMA 4.27:  Le t  n = n l  -[- " ' "  -[- nk be even. A s s u m e  tha t  for any choice o f  
! II s ch that 2n l _< 1 and 2n 'l _< 1 and E n i  + n i : n we have 

Then  

(93nI 93~'o "'" 93~ 93~I' 93rig "" "93%' )t = 0. 

( 9 3 n l ~ [ n 2  " ' "  93nk) 2tq-1 ~--- O. 

Proof." Choose wi E 93n~, and  wr i te  w = w l . . . w k .  For those  ni  which are  

even, we can wr i te  wi --  w~ + w~ ~ wi th  w~ a l inear  combina t ion  of A - T words  

and w~' a l inear  combina t ion  of T + A words,  while for the  odd  ni we can wr i te  

wi = w~ + w~' wi th  w~ a l inear  combina t ion  of A + A words and  w~' a l inear  

combina t ion  of T + T words.  

We next  switch the  w~ and w~' so t h a t  w~ is a A +  word,  and  w~+ 1 is a A +  

word if and  only if w~ is a + T  word. Then ,  since n is even, w 2t = 0 if and  only if 

(w' 1 Win) 2t 0 and (w~' - "~2t . . . . . . . .  W~) = 0. We may  therefore  assume in t u r n  t h a t  

w is a l inear  combina t ion  of A + T words,  or is a l inear  combina t ion  of T + A 

words. 

We may  also assume t h a t  each wi is e i ther  a l inear  combina t ion  of A + T 

words,  or of T + A words,  or of A + A words,  or  of T + T words.  We consider  

these  cases in turn .  If wi is a 

�9 A + T word: t hen  r  

�9 T + A word: t hen  r  

�9 A + A word: t hen  ~b(wi) 

�9 T - T word: t hen  r  

= (u  v)  = (1 ) (u  . )  a n d  w e  set  x ,  = + v; 

= ( :  : )  = ( : ) (1  1) and  we set xi  = u + v; 

= ( u  u u u )  : ( l l ) u (  1 1) a n d  w e  set x i - - - u ;  

= and  we set xi  = u +  v + w  + x. w x 
If  w is a l inear  combina t ion  of A + T words,  t hen  r  = ( X l . - -  xk)2~A, 

and by  hypothes is  ( (x l  . . .  xk)2)  t = 0, so w2tA  -- 0. If  w is a l inear  combina t ion  

of T + A  words,  t hen  A~b(w 2t) = 0 by the  same a rgument .  In  all cases w 2t+l = 0. 
| 

PROPOSITION 4.28:  / / k  = Y2, then 93 is graded nil; more  precisely, given x E 93 

homogeneous  o f  degree n, we have x 72n = O. 
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Proof'. If  n is odd, we may replace x by x 2, which will be of even degree 2n. 

I t  is therefore sufficient to  show tha t  x lsn = 0 for all homogeneous elements of 

even degree n, and from now on we assume tha t  n is even. 

Assume first tha t  x E 02~. Then  x = x l " " X n ,  and since 021 is spanned by 

{A, B,  C, D} with B + C + D  = 0, we may write xi -- aiA+t3iT~ with ai,/~i E F2 

and Ti C {B, C, D}. F~arthermore, since n is even, we have x = x ~ + x ~ where 

x'  and x"  are monomials,  with x'  e (AT)  n/2 and x"  E (TA)  n/2. Therefore 

x 8 = (x ')  s + (x")  s = 0 by Proposi t ion  4.21. 

In  the general case, set to = 8 and ti+l = 2ti + 1. Then  ti = 9 �9 2 i - 1. Find 

k E N such tha t  n < 2 k < 2n. Then,  applying k times Lemma 4.27 to  x, we 

have x tk = 0, so afort iori  X l s n  : 0. II 

The  following result answers a question in [44]; it also answers a conjecture 

a t t r ibuted  to  Goodearl  [15, Conjecture 3.1]. 

THEOREM 4.29: I l k  is algebraic over F2, then 9.1 is graded nil and Jacobson 

radical 

I l k  is not algebraic over F2, then 02 is not graded nil, and it is primitive. 

Proo~ Assume first tha t  k is algebraic over F2. Choose a homogeneous x E 

02(k) of degree > 1. Then  x e 02(F2~) for some n, and therefore x may be seen 

as a homogeneous element in Mn(02), by embedding F2- as a maximal  field in 

Mn(F2).  Now 02 is graded nil by Proposi t ion 4.28, so Mn(02) is graded nil by 

Lemma 4.25, so 02(F2-) is graded nil by restriction, and therefore w(F2- )  = 

02(]F2~) by Proposi t ion 4.26 and Lemma 3.15; finally 02(k) is Jacobson radical 

since it is a union of such algebras. 

Assume now tha t  k contains a t ranscendental  element t. Then  91 is primitive 

by Proposi t ion 4.23, and the  proof  of  Theorem 4.20, just  as Proposi t ion 4.26, 

implies t h a t  02 is not graded nil. Indeed the  element A + B + Dt  has infinite 

order. | 
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